

Introduction to Symmetric and Asymmetric Cryptography

Ali E. Abdallah Birmingham CityUniversity Email: Ali.Abdallah@bcu.ac.uk Lectures are part of the project: ConSoLiDatE Multi-disciplinary Cooperation for Cyber Security, Legal and Digital Forensics Education

December 2014-March 2016

Objectives

- Motivate the needs for cryptography
- Explain the role of cryptography in everyday use
- Symmetric Cryptography:
 Describe the main concept
 - Analyse some examples
 - Discuss strength and limitations
- Asymmetric Cryptography
 - Describe the main concept
 - Analyse some examples
 - Discuss strength and limitations
- Questions.

Why Use Cryptography?

- To communicate secret information when other people (eavesdroppers) are listening.
- When attacker has access to the raw bits representing the information
 Mitigation: Data encryption

The Cast of Characters

Alice and Bob are "honest" players.

- Eve and Malory are adversaries (intruders)
- Eve "eavesdropper", is a passive intruder. Sniffs messages at will
- Malory is an active "intruder". Aims to view, alter, delete and inject messages into the network

- Problem: Alice and Bob would like to exchange messages over a public network (such as Internet) in such a way that information contents are not revealed to anyone but the intended recipient.
- Solution: Data Encryption + clever Cryptography

How does it work?

Two functions are needed:

Confidentiality

Example

encoder function is next letter in the alphabet

decoder function is ...

- Encoding the contents of the message (the plaintext) in such a way that hides its contents from outsiders is called encryption.
- The process of retrieving the plaintext from the cipher-text is called decryption.
- Encryption and decryption usually make use of a key, and the coding method is such that decryption can be performed only by knowing the proper key.

Plaintext

The Encryption Process

Aim: to hide a message content by making it unreadable Key Material to keep secret: Encryption Algorithm Text Data Audio Video Graphics

Ciphertext: unreadable version

Scrambling

data

Encryption and Decryption

 The encryption and decryption functions take a key as an additional input.

Confidentiality

Shared Keys

- In a symmetric cryptosystem the encryption key and the decryption key are identical.
- A longer key implies stronger encryption.

Confidentiality

Symmetric Cryptosystems

Use the same key (the secret key) to encrypt and decrypt a message

Confidentiality

One Time Pad

- The perfect encryption
- Pad: perfectly random list of letters
 - Use each letter exactly once to encrypt one letter of message and to decrypt the one letter of message
 - > Discard each letter once used (hence, pad)
 - Method: Add the message letter and the key letter Mod 26. This is reversible like XOR.
- The message can never, ever, be found (unless you have the pad).

Confidentiality

Emailing an encrypted message

Alice wants to send a confidential message CREDIT CARD CODE IS 5206 to Bob

P

Symmetric Cryptosystems

. Data Encryption Standard (DES)

- Developed in the 1970s; made a standard by the US government, was adopted by several other governments worldwide and was widely used in the financial industry until 2004.
- Block cipher with 64-bit block size.
- Uses 56-bit keys: Strong enough to keep most random hackers and individuals out, but it is easily breakable with special hardware.
- A variant of DES, Triple-DES or 3DES is based on using DES three times (normally in an encrypt-decrypt-encrypt sequence with three different, unrelated keys). Many people consider Triple-DES to be much safer than plain DES.

Advanced Encryption Standard (AES)

- Current standard.
- DES was perceived as breakable in mid 2000.
- AES was a stronger replacement to DES.

Symmetric Cryptosystems (2)

2. RC2, RC4 and RC5 (RSA Data Security, Inc.)

- Variable-length keys as long as 2048 bits
- Algorithms using 40-bits or less are used in browsers to satisfy export constraints
- The algorithm is very fast. Its security is unknown, but breaking it seems challenging. Because of its speed, it may have uses in certain applications.

3. IDEA (International Data Encryption Algorithm)

- > Developed at ETH Zurich in Switzerland.
- Uses a 128 bit key, and it is generally considered to be very secure.
- Patented in the United States and in most of the European countries. The patent is held by Ascom-Tech. Non-commercial use of IDEA is free. Commercial licenses can be obtained by contacting idea@ascom.ch.
- > Used in email encryption software such as PGP and RSA

Symmetric Cryptosystems (3)

4. Blowfish

- > Developed by Bruce Schneider.
- Block cipher with 64-bit block size and variable length keys (up to 448 bits). It has gained a fair amount of acceptance in a number of applications. No attacks are known against it.
- Blowfish is used in a number of popular software packages, including Nautilus and PGPfone.

5. SAFER

- Developed by J. L. Massey (one of the developers of IDEA). It is claimed to provide secure encryption with fast software implementation even on 8-bit processors.
- Two variants are available, one for 64 bit keys and the other for 128 bit keys. An implementation is in ftp:// ftp.funet.fi/pub/crypt/cryptography/symmetric/safer.

Limitations

- Parties that have not previously met cannot communicate securely
- Many people need to communicate with a server (many-to-one communications)
 - cannot keep server key secret for long
- Once the secret key is compromised, the security of all subsequent messages is suspect and a new key has to be generated
- Authentication service must know private key
 - privacy implications---someone else knows your key
 - > two possible points of attack
 - > changing authentication service requires a new key
- Digital signatures are difficult
- Cross-realm authentication
 - accessing services outside the domain or realm of your authentication server is problematic
 - requires agreement and trust between authentication services
 - introduces another potential point of attack

Analysis

- Private or symmetric key systems rely on symmetric encryption algorithms where information encrypted with a key K can only be decrypted with K.
- Secret key is exchanged via some other secure means (hand-delivery, over secured lines, pre-established convention).
- Time to crack known symmetric encryption algorithms

KEY LENGTH	SPEND \$\$THOUSANDS	SPEND \$\$MILLIONS	SPEND \$100 MILLION
40 bits	seconds	< 1 second	< .01 second
56 bits	hours	minutes	1 second
64 bits	days	hours	minutes
80 bits	years	months	days
128 bit	s million years	> million years	> centuries
Confidentiality			

Symmetric Cryptosystems Problems

- How to transport the secret key from the sender to the recipient securely and in a tamperproof fashion?
- If you could send the secret key securely, then, in theory, you wouldn't need the symmetric cryptosystem in the first place -- because you would simply use that secure channel to send your message.
- Frequently, trusted couriers are used as a solution to this problem.

Asymmetric Cryptosystems

In asymmetric-key cryptography, users do not need to know a symmetric shared key; everyone

- shields a private key and
 advertises a public key

- Alice and Bob don't already share a key and can't meet to do so. How can they make their future communications confidential?
- The main protocol we study is the celebrated Diffie-Hellmann Key Exchange (DHKE) protocol.

An alternative interpretation

- Alice & Bob each think of a secret color (known only to them)
- They mix their color with yellow (agreed upon openly ahead of time) and exchange.
- They mix their color with what they' ve received.
- Both have the same color but observer cannot duplicate.

Properties

- These algorithms are based on computationally intensive problems such as finding the prime factors of large numbers.
 - Longer the length of the key pair, the more time it takes to crack the private key
 - Keys used in today's internet will take millions of years to crack using today's technologies

Slow ..

- Public key cryptosystems are slow, really slow!
 Three orders of magnitude (1000 times) slower than AES
 - > mainly used as key exchange tool
- Scientists are supposed to be real "smart" and love to solve difficult problems
 - but even they hope to never solve factoring
 - > if you can find a quick solution,
 - > fame, dollars and danger lurk!

Ŷ

Problems

Keys are usually very long and encryption is expensive

- RSA encryption is a 1000 times slower than typical symmetric algorithms
- hard to remember secret key where do you store it?
- typically only used for authentication, then a random key and a symmetric encryption algorithm is used for subsequent communication
- Multicast is problematic
 - Better to authenticate using public key algorithm, then use random key with symmetric algorithm
- How do you know you have the right public key for a principal?
 - Public key is usually distributed as a document ``signed'' by a well- known and trusted certification authority (e.g. Verisign). This is called a certificate. How do you determine if signature is up-to- date? What if the key has been compromised?

Analysis

- Private (Symmetric) key:
 - + encryption is fast
 - identity is not easily portable across authentication services
 - > secret key *must* be held by server
 - + good for structured, organizational security
- Public (Asymmetric) key:
 - > encryption is slow
 - + identity is inherently portable
 - + secret key need not ever be revealed
 - + provides digital signatures
 - + good for individuals in loosely structured networks

1. Agree on a Session Key

Digital Envelope

- Combination of public-key (asymmetric) cryptography and symmetric systems
- Sender:
 - Generate a secret key at random called the session key (which is discarded after the communication session is done)
 - Encrypt the message using the session key and the symmetric algorithm of your choice
 - Encrypt the session key with the recipient's public key. This becomes the "digital envelope"
 - Send the encrypted message and the digital envelope to the recipient

Digital Envelope

- Recipient
 - Receive the envelope, uses private key to decrypt it recovering the session key.
 - > The message is secure since it is encrypted using a symmetric session key that only the sender and recipient know.
 - The session key is also secure since only the recipient can decrypt it.
 - Can even act like a one time pad

Summary

Cryptosystems: Symmetric & Asymmetric

- Symmetric: Use the same key (the secret key) to encrypt and decrypt a message
- Asymmetric: Use one key (the public key) to encrypt a message and different key (the private key) to decrypt it.
- Symmetric Cryptosystems Problems
 - How to transport the secret key from the sender to the recipient securely and in a tamperproof fashion? If you could send the secret key securely, then, in theory, you wouldn't need the symmetric cryptosystem in the first place -- because you would simply use that secure channel to send your message.

> Frequently, trusted couriers are used as a solution to this problem.

 Modern solutions combine features from both Symmetric & asymmetric cryptosystems.

Questions?

Summary

- Cryptography enables parties to communicate on open networks without fear of being eavesdropped
 - > all cryptographic schemes have their limitations
- Symmetric schemes use a common key for encryption and decryption.
- Asymmetric (public key) schemes use a public-private key pair where the public key is used by senders to encrypt and only the recipient with the private key can decrypt the message.
- Trade-offs between symmetric and asymmetric schemes.
- Digest functions (Hash-functions) can be used to maintain integrity of a message and make it tamper-proof.
- Digital envelopes combine the security of asymmetric schemes with the efficiency of symmetric schemes.
- Certification authorities allow authenticated access to public keys.
- A hierarchy of certification authorities (hierarchy of trust) can be used.
- Certification Revocation Lists maintain a list of invalid certificates.

Digital Envelope

- Combination of public-key (asymmetric) cryptography and symmetric systems
- Sender:
 - Generate a secret key at random called the session key (which is discarded after the communication session is done)
 - Encrypt the message using the session key and the symmetric algorithm of your choice
 - Encrypt the session key with the recipient's public key. This becomes the "digital envelope"
 - Send the encrypted message and the digital envelope to the recipient

Digital Envelope

- Recipient
 - Receive the envelope, uses private key to decrypt it recovering the session key.
 - > The message is secure since it is encrypted using a symmetric session key that only the sender and recipient know.
 - The session key is also secure since only the recipient can decrypt it.
 - > Can even act like a one time pad

Source: Bob Thibadeau http:// dollar.ecom.cmu.edu/sec/lec02.ppt